Asymmetric cell division requires specific mechanisms for adjusting global transcription
نویسندگان
چکیده
Most cells divide symmetrically into two approximately identical cells. There are many examples, however, of asymmetric cell division that can generate sibling cell size differences. Whereas physical asymmetric division mechanisms and cell fate consequences have been investigated, the specific problem caused by asymmetric division at the transcription level has not yet been addressed. In symmetrically dividing cells the nascent transcription rate increases in parallel to cell volume to compensate it by keeping the actual mRNA synthesis rate constant. This cannot apply to the yeast Saccharomyces cerevisiae, where this mechanism would provoke a never-ending increasing mRNA synthesis rate in smaller daughter cells. We show here that, contrarily to other eukaryotes with symmetric division, budding yeast keeps the nascent transcription rates of its RNA polymerases constant and increases mRNA stability. This control on RNA pol II-dependent transcription rate is obtained by controlling the cellular concentration of this enzyme.
منابع مشابه
Asymmetric Division and Differential Gene Expression during a Bacterial Developmental Program Requires DivIVA
Sporulation in the bacterium Bacillus subtilis is a developmental program in which a progenitor cell differentiates into two different cell types, the smaller of which eventually becomes a dormant cell called a spore. The process begins with an asymmetric cell division event, followed by the activation of a transcription factor, σF, specifically in the smaller cell. Here, we show that the struc...
متن کاملBASL Controls Asymmetric Cell Division in Arabidopsis
Development in multicellular organisms requires the organized generation of differences. A universal mechanism for creating such differences is asymmetric cell division. In plants, as in animals, asymmetric divisions are correlated with the production of cellular diversity and pattern; however, structural constraints imposed by plant cell walls and the absence of homologs of known animal or fun...
متن کاملThe Global Regulatory Architecture of Transcription during the Caulobacter Cell Cycle
Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs) and a DNA methyltransferase. Using a modified global 5' RACE protocol, we globally mapped transcription start sites (TSSs) at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and i...
متن کاملAsymmetric cell division in plant development.
Plant embryogenesis creates a seedling with a basic body plan. Post-embryonically the seedling elaborates with a lifelong ability to develop new tissues and organs. As a result asymmetric cell divisions serve essential roles during embryonic and postembryonic development to generate cell diversity. This review highlights selective cases of asymmetric division in the model plant Arabidopsis thal...
متن کاملSelective cell cycle transcription requires membrane synthesis in Caulobacter.
Caulobacter crescentus divides asymmetrically and creates distinct polar membrane surfaces that partition during the cell cycle to distinct cell progeny. Blocking membrane synthesis prevented transcription from selective promoters involved in asymmetric cell division. Transcription from sigma-54-dependent flagellar promoters was blocked completely; however, transcription from the CtrA response ...
متن کامل